
Brush Electronics Encrypted Serial Bootloader System User Manual

 Version 1.3 – 25th January, 2010

© Copyright 2004-2009 Andrew Smallridge Page 1 of 6

Encrypted Serial Bootloader System
© 2003-2010 Andrew Smallridge

asmallri@brushelectronics.com

www.brushelectronics.com

Brush Electronics’ Encrypted Serial Bootloaders have been developed to support

remote firmware upgrade for the Microchip PIC base Microcontroller systems

deployed in the field. The Encrypted Serial Bootloader is derived from our Encrypted

Ethernet Bootloaders that operated on Encrypted image files utilizing the XTEA

(eXtended Tiny Encryption Algorithm).

The Brush Electronics’ Encrypted Serial Bootloader System comprises of three main

elements:

1. Hex File Encrypter application

2. Bootloader Firmware resident in the target hardware platform

3. Programmer application executing on the controlling host

For the sake of subsequent explanation, the term Bootloader refers to the code

(firmware) executing in the PIC microprocessor (target), the Programmer refers to the

programming application running on the controlling host computer and the Encrypter

refers to the application that encrypts the original hex file.

The Brush Electronics’ Encrypted Serial Bootloaders are available for the Microchip

PIC18F, PIC24, dsPIC33 and PIC32 families of Microcontrollers.

Key attributes of Brush Electronics’ Encrypted Serial Bootloaders:

 Ability to bootload a remote system

 Incremental Bootloader. As little as a single byte can be modified

 No resources are required on the target PIC other than the flash memory

holding the boot code

 The PIC18, PIC24/dsPIC33 and PIC32 versions are located in low program

memory. User applications must be compiled with a linker script reserving the

Bootloader memory. Sample linker scripts for linking the User Application are

included in the system package. For development environments that do not use

linker scripts, such as the CCS PCH compiler, build directives are used to

reserve program memory used by the bootloader.

 Encrypts standard Intel Hex Files

Bootloader Memory MAP

The Bootloader code resides in a portion of the program memory space. Because this

program memory is flash memory based, user configurable optional parameters are

also stored in this space. For the PIC18F and PIC24/dsPIC33 versions, the Bootloader

mailto:asmallri@brushelectronics.com
http://www.brushelectronics.com/

Brush Electronics Encrypted Serial Bootloader System User Manual

 Version 1.3 – 25th January, 2010

© Copyright 2004-2009 Andrew Smallridge Page 2 of 6

transparently uses the PIC’s reset vector, that is, the lower 8 bytes of program

memory. The user’s reset vector is transparently mapped into a program memory

block in the Bootloader’s code space into the region referred to as the Bootloader

parameter block. The location of the bootloader parameter block is defined in the

bootloader’s linker script. For the PIC18 and PIC24/dsPIC33 versions, this parameter

block is the userjump memory region. For the PIC32 version, this parameter block is

the bldr_param_mem memory region.

The user’s code MUST implement a GOTO instruction (a long jump) in the first 4

instructions. Typically this GOTO instruction is automatically inserted during the

linking stage. The Microchip C18, C30 and C32 compilers, when used with their

respective standard linker scripts, automatically insert the GOTO instruction. For

other compilers, such as the CCS PCH compiler, build directives are used to achieve

the same result.

The PIC18F version of the bootloader, currently available for the CCS PCH compiler,

is located in low program memory from 0xF0 to approximately 0x1CFF. The

PIC24/dsPIC33 version of the Bootloader is located in low program memory from

0x400 to approximately 0x2420. The PIC32 version of the Bootloader is located in

low program memory from 0x9D00_0000 to approximately 0x9D00_BFFF. The

Bootloaders only use a fraction of the space currently allocated with the balance of

free space left to allow developers to enable the extensive debugging capabilities

incorporated in the code via a series of #define conditional compile directives and to

accommodate significant customisation of the software. For the PIC32 bootloader

version, developers can readily minimize the Bootloader’s memory footprint by

modifying the Bootloader’s linker script to move the parameter block bldr_param

lower down in program memory to just above the Bootloader’s code and then

modifying the application’s linker script to use the freed up space. Refer to the

platform specific header file platform.h and associated linker script for the actual

memory map usage.

The PIC32 version does not intercept the user applications reset vector – it does not

need to do so. Instead it executes a GOTO to the application program’s “well known”

entry point as defined in the application linker script.

Basic Operation

The Bootloader code in the PIC and PC based programmer application use flags to

control the boot load process. Two of these flags determine the boot up behaviour of

the PIC:

 The PENDING RESET VECTOR is used to indicate that the user’s RESET

vector has not yet been received.

 The INVALID USER CODE SPACE flag indicates that an Intel End-of-File

hex record has not yet been received.

The PIC’s Bootloader code is executed automatically as a result of a power on reset, a

reset command or a jump to absolute address 0x0000. Wherever possible a CPU reset

should be used to enter the Bootloader as this forces all registers associated with

interrupts to a known state. The Bootloader is now in BOOTLOADER DISCOVERY

Brush Electronics Encrypted Serial Bootloader System User Manual

 Version 1.3 – 25th January, 2010

© Copyright 2004-2009 Andrew Smallridge Page 3 of 6

MODE. If either of the two critical flags is set the programmer will automatically

enter LOADER COMMAND MODE. This generally indicates the user code space is

empty.

If neither of the critical flags has been set, the loader will wait for five seconds

looking for a command from the Programmer via the serial interface to put the

Bootloader into LOADER COMMAND MODE. If no command is received the

Bootloader passes control to the user’s application code via the remapped reset vector.

Note that the Bootloader and the user’s code do not operate concurrently – this

explains why the loader does not require any of the PICs resources other than the

consumed program memory.

The Bootloader accepts commands from the Programmer via a serial interface. Serial

communications, especially in noisy environments or as a result of long

communications paths, can be unreliable resulting in lost or corrupted characters

therefore the programmer application, in conjunction with the Bootloader firmware,

implements error detection, reporting and, where applicable, retransmission.

The Bootloader implements an incremental programming mechanism. This means

that it will program only the bytes specifically contained in the record to be

programmed. Code changes down to a single byte granularity are supported and the

remaining program memory space contents are preserved.

Using the programming application

The following image is a screenshot of the Encrypted Serial Bootloader Utility. The

Target’s Bootloader has been captured and the encrypted hex file demo.cry has been

selected for programming into the target via the Encrypted Serial Bootloader.

The Program Status information is displayed in the right hand side memo pane. The

Target Response memo pane shows the time the last message was received from the

Bootloader as a response to control and data messages from the Encrypted Serial

Bootloader Utility.

Brush Electronics Encrypted Serial Bootloader System User Manual

 Version 1.3 – 25th January, 2010

© Copyright 2004-2009 Andrew Smallridge Page 4 of 6

Steps for downloading code to a target via the Bootloader and Programmer

Application:

Step 1 – Reset the Target system.

Step 2 – Within 3 seconds of Step 1, Click Capture Target to initiate device

discovery and capture. The programmer application will send a capture

message to the Bootloader and wait for an acknowledgement from the

Bootloader indicating it has been captured. This sending of the capture

message will repeat every 500ms (retry interval) until the Bootloader responds

to the command or until the Stop Capture button is operated.

Step 3 – Select the desired erase or program operation. Note that to program

the Bootloader from a file, you must first select the source file using the File

button. Encrypted source files have the extension “.cry”. The identified file

and path will be displayed in the file window. The source file is opened when

the Program button is clicked and closed at completion of the programming

cycle. The next time the Program button is clicked the source file is again

opened. This is important because it means that the Bootloader is always being

programmed with the current contents of the source file.

Step 4 – Once the target has been successfully programmed, click the Reset

Target button which will issue a LOADER RESET COMMAND to the

Bootloader.

When the LOADER RESET COMMAND is executed the target executes the

Bootloader code and waits for approximately 5 seconds to receive the capture

command. If this command is not received and the critical flags are clear then the

loader passes control to the user’s application program.

Encrypter Application

The XTEA.EXE Encrypter application is a Windows console application that accepts

either one or three command line arguments. These arguments are the source file

name of the standard Intel hex file to be encrypted, the 16 byte Cipher Key and the

number of Iterations the cipher should be applied to the cipher text. The Cipher key

must be exactly 16 bytes and must match the hard coded XTEA_Key in the Bootloader

source code. The Iterations (typically 16) must match the hard coded

XTEA_Iterations in the Bootloader source code. If only the source filename is

specified on the command line then the XTEA’s applications hard coded XTEA_Key

and XTEA_Iterations constants are used.

The Encrypter generates the encrypted output file using the same filename as the

source substituting .cry for the file extension.

Usage: XTEA sample.hex

Usage: XTEA sample.hex 123helloworld321 16

Brush Electronics Encrypted Serial Bootloader System User Manual

 Version 1.3 – 25th January, 2010

© Copyright 2004-2009 Andrew Smallridge Page 5 of 6

Programmer Application

The commands available via the Programmer’s GUI interface are self explanatory and

further information can be found in the source code for the Programmer Application.

The Capture Target command (Loader Mode) captures the Bootloader to prevent the

Bootloader passing control to the user’s application program at the end of the initial 5

second period from reset. In this mode the Bootloader is under the control of the

Programmer application. If he user’s code space is valid and the target is reset while

in this mode then after 5 seconds control will once again be passed to the user’s

program.

The Programmer and Bootloader are implemented in a client / server arrangement.

The Programmer (client) issues commands to the Bootloader (server) which executes

the commands and returns status information for each command. The Programmer

application is multithreaded, implementing a read thread for processing packets

received from the Bootloader. Packets sent to the Bootloader are handled by the main

thread. The Programmer Application uses a timer control as part of the error detection

and processing mechanism for the various ERASE and PROGRAM commands.

All commands from the Programmer application to the Bootloader will result in a

status packet being sent from the Bootloader to the Programmer Application

indicating the success or otherwise of the command. In the event that no status is

returned by the Bootloader for the current record, the timer will expire and a

consecutive error counter variable will be incremented. If this is consecutive error

counter value below the maximum consecutive error threshold then the timer is

restarted and the previously saved current record is retransmitted.

The Programmer Application is written in Delphi for the windows environment. The

application uses the freeware Ararat Synapse SynaSer serial library. The serial library

can be downloaded from http://synapse.ararat.cz/doku.php/download

Customization

The bootloader must be customized to support different hardware platforms (targets)

and microcontrollers. In general the customization requires the following steps:

 Define target hardware platform in the platform.h file

 In the Microchip IDE, select the processor in the the menu Configure / Select

Device

 Create the processor specific bootloader linker script for compiling the

bootloader. Refer to the sample bootloader linker scripts supplied with the

bootloader package which contains instructions for modifying a standard

linker script

 Create the processor specific bootloader linker script for compiling the user

application to coreside with the bootloader. Refer to the sample application

linker scripts supplied with the bootloader package which contains instructions

for modifying a standard linker script

 Modify the bootloader’s main source file to specify the target specific fuses

http://synapse.ararat.cz/doku.php/download

Brush Electronics Encrypted Serial Bootloader System User Manual

 Version 1.3 – 25th January, 2010

© Copyright 2004-2009 Andrew Smallridge Page 6 of 6

Limitations of the Bootloader

The following limitations of the Bootloader must be taken into account:

 The target’s registers are not preserved by a RESET

 No support for WDT fuse bit. WDT support if required must be implemented

by the software enabled WDT feature

 User’s program must execute a GOTO instruction within the first four

instructions (PIC24/dsPIC33 versions only)

 The Bootloader ignores Configuration Records and ID records

Need Something Special?

What if you need some unique feature added to the Bootloader or a Bootloader

developed for some other product? Brush Electronics specializes in the development

of Bootloaders for Microchip Microcontrollers and welcome the opportunity to work

with you to develop a custom product that meets your specific needs.

Brush Electronics

2 Brush Court

Canning Vale

Western Australia 6155

Australia

Tel: +61 (0) 894676358

Email: info@brushelectronics.com

www: www.brushelectronics.com

mailto:info@brushelectronics.com
http://www.brushelectronics.com/

